Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.243
Filtrar
1.
Environ Monit Assess ; 196(5): 423, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570374

RESUMO

Mobile herbicides have a high potential for groundwater contamination. An alternative to decrease the mobility of herbicides is to apply materials with high sorbent capacity to the soil, such as biochars. The objective of this research was to evaluate the effect of eucalyptus, rice hull, and native bamboo biochar amendments on sorption and desorption of hexazinone, metribuzin, and quinclorac in a tropical soil. The sorption-desorption was evaluated using the batch equilibrium method at five concentrations of hexazinone, metribuzin, and quinclorac. Soil was amended with eucalyptus, rice hull, and native bamboo biochar at a rate of 0 (control-unamended) and 1% (w w-1), corresponding to 0 and 12 t ha-1, respectively. The amount of sorbed herbicides in the unamended soil followed the decreasing order: quinclorac (65.9%) > metribuzin (21.4%) > hexazinone (16.0%). Native bamboo biochar provided the highest sorption compared to rice hull and eucalyptus biochar-amended soils for the three herbicides. The amount of desorbed herbicides in the unamended soil followed the decreasing order: metribuzin (18.35%) > hexazinone (15.9%) > quinclorac (15.1%). Addition of native bamboo biochar provided the lowest desorption among the biochar amendments for the three herbicides. In conclusion, the biochars differently affect the sorption and desorption of hexazinone, metribuzin, and quinclorac mobile herbicides in a tropical soil. The addition of eucalyptus, rice hull, and native bamboo biochars is a good alternative to increase the sorption of hexazinone, metribuzin, and quinclorac, thus, reducing mobility and availability of these herbicides to nontarget organisms in soil.


Assuntos
Eucalyptus , Herbicidas , Oryza , Quinolinas , Sasa , Poluentes do Solo , Triazinas , Carvão Vegetal , Solo , Adsorção , Monitoramento Ambiental , Herbicidas/análise , Poluentes do Solo/análise
2.
PeerJ ; 12: e17022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563017

RESUMO

Eucalyptus camaldulensis is a multifunctional tree and is globally used for the reclamation of problematic lands. Eucalyptus camaldulensis is prone to attack by a number of pathogens, but the most important threat is the Fusarium wilt (Fusarium oxysporum). Keeping in view the importance of E. camaldulensis and to manage this disease, five plant activators, i.e., salicylic acid (C7H6O3), benzoic acid (C7H6O2), citric acid (C6H8O7), dipotassium phosphate (K2HPO4), monopotassium phosphate (KH2PO4) and nutritional mixture namely Compound (NPK) and nutriotop (Fe, Zn, Cu, B, Mn) were evaluated in the Fusarium infested field under RCBD in the Research Area, Department of Forestry and Range Management, University of Agriculture, Faisalabad (UAF). Among plant activators, salicylic acid and a combination of compound + nutriotop exhibited the lowest disease incidence and enhanced fresh and dry weight of leaves compared to other treatments and control. Results of the environmental study indicated maximum disease incidence between 35-40 °C (max. T), 6-25 °C (mini. T), 70-80% relative humidity and 1.5-2.5 km/h wind speed while pan evaporation expressed weak correlation with disease development. It was concluded that Fusarium wilt of Eucalyptus camaldulensis could be managed through activation of the basal defense system of the host plant with provision of salicylic acid and balanced nutrition by considering environmental factors. Recent exploration is expected to be helpful for future research efforts on epidemiology and ecologically sound intervention of Fusarium wilt of Eucalyptus camaldulensis.


Assuntos
Eucalyptus , Fusarium , Ácido Salicílico , Folhas de Planta , Fosfatos
3.
Pestic Biochem Physiol ; 200: 105834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582576

RESUMO

Acetylcholinesterase (AChE) inhibitors cause insect death by preventing the hydrolysis of the neurotransmitter acetylcholine, which overstimulates the nervous system. In this study, isorhapontin, isolated from E. globulus leaves, was evaluated as a natural insecticide with AChE inhibition at 12.5 µM. Using kinetic analyses, we found that isorhapontin acted as a competitive inhibitor that binds to the active site of AChE. The inhibition constant (Ki) was 6.1 µM. Furthermore, isorhapontin and resveratrol, which have basic skeletons, were predicted to bind to the active site of AChE via molecular docking. A comparison of the hydrogen bonding between the two stilbenes revealed characteristic differences in their interactions with amino acids. In isorhapontin, Trp83, Gly149, Tyr162, Tyr324, and Tyr370 interacted with the sugar moiety. These results suggest that with further development, isorhapontin can be used as an insecticide alternative.


Assuntos
Eucalyptus , Inseticidas , Estilbenos , Acetilcolinesterase/metabolismo , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Eucalyptus/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Folhas de Planta/metabolismo
4.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474187

RESUMO

Pheromone-binding proteins (PBPs) are specific odorant-binding proteins that can specifically recognize insect pheromones. Through transcriptional analysis of the antennae of adult Endoclita signifer, EsigPBP3 was discovered and identified, and EsigPBP3 was found to be highly expressed in the antennae of male moths. Based on the binding characteristics and ability of EsigPBP3, we can find the key ligands and binding site to consider as a target to control the key wood bore E. signifier. In this study, the fluorescence competitive binding assays (FCBA) showed that EsigPBP3 had a high binding affinity for seven key eucalyptus volatiles. Molecular docking analysis revealed that EsigPBP3 had the strongest binding affinity for the sexual pheromone component, (3E,7E)-4,7,11-trimethyl-1,3,7,10-dodecatetraene. Furthermore, same as the result of FCBA, the EsigPBP3 exhibited high binding affinities to key eucalyptus volatiles, eucalyptol, α-terpinene, (E)-beta-ocimene, (-)-ß-pinene, and (-)-α-pinene, and PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 are key sites. In summary, EsigPBP3 exhibits high binding affinity to male pheromones and key volatile compounds and the crucial binding sites PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 can act as targets in the recognition of E. signifier pheromones.


Assuntos
Eucalyptus , Mariposas , Receptores Odorantes , Masculino , Animais , Feromônios/metabolismo , Proteínas de Transporte/metabolismo , Eucalyptus/metabolismo , Simulação de Acoplamento Molecular , Mariposas/metabolismo , Receptores Odorantes/metabolismo , Proteínas de Insetos/metabolismo
5.
Braz J Biol ; 84: e281361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451631

RESUMO

The present study sought to evaluate the antimicrobial and anti-adherent potential of Eucalyptus radiata essential oil against food-borne strains of Escherichia coli. The study was performed using the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). In addition, the disk diffusion technique was used to evaluate the association of Eucalyptus radiata essential oil with synthetic antimicrobials. The Minimum Inhibitory Adherence Concentration (MIC) was also performed. The results revealed that E. radiata showed antimicrobial activity against the E. coli strains tested, with MIC values ranging from 500 µg/mL to 1000 µg/mL and MBC values ranging from 500 µg/mL to 1,024 µg/mL. As for the associations, it was observed that E. radiata oil exhibited a synergistic effect for some antibiotics, especially Ceftriaxone, with greater interference from the essential oil. Furthermore, it was effective in inhibiting the adherence of bacterial strains of E. coli, showing a more significant antibiofilm effect than the antibacterial agent 0.12% chlorhexidine digluconate. In summary, the essential oil of E. radiata showed antimicrobial potential against strains of E. coli of food origin, and can therefore, through in-depth studies, be used alone or in association with synthetic antimicrobials to combat infections caused by this pathogen.


Assuntos
Eucalyptus , Produtos da Carne , Óleos Voláteis , Escherichia coli , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia
6.
Environ Sci Pollut Res Int ; 31(14): 21610-21631, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393552

RESUMO

Current vector control strategies based on synthetic chemicals are not eco-friendly against non-target organisms; hence, alternative approaches are highly required. Commercially purchased oil of Mentha spicata (Spearmint) and Eucalyptus citriodora (Citriodora) were examined against the medical pest Cx. quinquefasciatus (Say) and their non-toxicity on the aquatic species was evaluated. Chemical screening with gas chromatography coupled with mass spectrometry (GC-MS) analysis revealed a total of 14 and 11 compounds in Citriodora and Spearmint oils, respectively, with the highest peak (%) at carvone (70.44%) and isopulegol (30.4%). The larvicidal activity on the fourth instar larvae of Cx. quinquefasciatus showed dose-dependent mortality and significance at a 100 ppm concentration 48 h post-treatment with Citriodora (76.4%, P ≤ 0.001) and Spearmint (100%, P ≤ 0.001). Additionally, the photomicrograph of the fourth instar larvae revealed significant physical abnormalities in the head and midgut tissues post-exposure to Spearmint and Citriodora oils. Moreover, the histological assay revealed severe damage in the epithelial cells and gut lumen 2 to 24 h post-treatment. The repellency percentage of adult Culex mosquitoes was prominent across both oils at 150 ppm 210 min post-exposure. Non-target toxicity on the aquatic predator showed both essential oils (Spearmint oil (17.2%) and Citriodora oil (15.2%)) are safer at the maximum treatment (200 ppm) compared to temephos (75.4% at 1 ppm). The in silico screening of phyto-compounds derived by both essential oils with BeeTox (online server) showed no contact toxicity to the honey bee Apis mellifera. Overall, the present research revealed that Spearmint and Citriodora essential oils and their active phyto-compounds were toxic to Cx. quinquefasciatus and harmless to the aquatic predator and honey bee.


Assuntos
Culex , Eucalyptus , Inseticidas , Mentha spicata , Óleos Voláteis , Abelhas , Animais , Mentha spicata/química , Inseticidas/química , Mosquitos Vetores , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleo de Eucalipto , Larva
7.
Biofouling ; 40(1): 54-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38353250

RESUMO

Legionella pneumophila is a Gram-negative bacterial pathogen that colonizes natural and artificial water systems and has the ability to form a biofilm. The biofilm protects L. pneumophila from various environmental factors and makes it more resistant to chlorine-based disinfectants. This study investigated the anti-bacterial properties of tea tree (Melaleuca alternifolia (Maiden and Betche) Cheel) oil and lemon eucalyptus tree (Eucalyptus citriodora Hook) essential oils (EOs) and their synergistic, additive inhibitory and anti-adhesive effects against L. pneumophila biofilm formation on polystyrene. The minimum effective concentration (MEC) for tea tree is 12.8 mg ml-1 and for lemon eucalyptus tree EO 6.4 mg ml-1. In the checkerboard assay, different combinations of these two EO show synergistic and additive anti-microbial activity. The minimum anti-adhesive concentration (MAC) for tea tree is 12.8 mg ml-1 and for lemon eucalyptus tree EO 6.4 mg ml-1. A combination of 3.2 mg ml-1 tea tree EO and 0.8 mg ml-1 lemon eucalyptus tree EO showed the strongest anti-adhesive effect against L. pneumophila on polystyrene. The tested oils and their combination showed intriguing potential to inhibit L. pneumophila biofilm formation.


Assuntos
Citrus , Eucalyptus , Legionella pneumophila , Melaleuca , Óleos Voláteis , Óleos Voláteis/farmacologia , Árvores , Poliestirenos , Biofilmes , Chá , Testes de Sensibilidade Microbiana
9.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338664

RESUMO

Irrigation and fertilization are essential management practices for increasing forest productivity. They also impact the soil ecosystem and the microbial population. In order to examine the soil bacterial community composition and structure in response to irrigation and fertilization in a Eucalyptus plantations, a total of 20 soil samples collected from Eucalyptus plantations were analyzed using high-throughput sequencing. Experimental treatments consisting of control (CK, no irrigation or fertilization), fertilization only (F), irrigation only (W), and irrigation and fertilization (WF). The results showed a positive correlation between soil enzyme activities (urease, cellulase, and chitinase) and fertilization treatments. These enzyme activities were also significantly correlated with the diversity of soil bacterial communities in Eucalyptus plantations.. Bacteria diversity was considerably increased under irrigation and fertilization (W, F, and WF) treatments when compared with the CK treatment. Additionally, the soil bacterial richness was increased in the Eucalyptus plantations soil under irrigation (W and WF) treatments. The Acidobacteria (38.92-47.9%), Proteobacteria (20.50-28.30%), and Chloroflexi (13.88-15.55%) were the predominant phyla found in the Eucalyptus plantations soil. Specifically, compared to the CK treatment, the relative abundance of Proteobacteria was considerably higher under the W, F, and WF treatments, while the relative abundance of Acidobacteria was considerably lower. The contents of total phosphorus, accessible potassium, and organic carbon in the soil were all positively associated with fertilization and irrigation treatments. Under the WF treatment, the abundance of bacteria associated with nitrogen and carbon metabolisms, enzyme activity, and soil nutrient contents showed an increase, indicating the positive impact of irrigation and fertilization on Eucalyptus plantations production. Collectively, these findings provide the scientific and managerial bases for improving the productivity of Eucalyptus plantations.


Assuntos
Eucalyptus , Solo , Solo/química , Ecossistema , Bactérias , Proteobactérias , Acidobacteria , Carbono , Fertilização , Microbiologia do Solo
10.
BMC Plant Biol ; 24(1): 96, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331783

RESUMO

Eucalyptus was one of the most cultivated hardwood species worldwide, with rapid growth, good wood properties and a wide range of adaptability. Eucalyptus stem undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. In order to better understand the genetic regulation of secondary growth in Eucalyptus grandis, Transcriptome analyses in stem segments along a developmental gradient from the third internode to the eleventh internode of E. grandis that spanned primary to secondary growth were carried out. 5,149 genes that were differentially expressed during stem development were identified. Combining the trend analysis by the Mfuzz method and the module-trait correlation analysis by the Weighted Gene Co-expression Network Analysis method, a total of 70 differentially expressed genes (DEGs) selected from 868 DEGs with high connectivity were found to be closely correlated with secondary growth. Results revealed that the differential expression of these DEGs suggests that they may involve in the primary growth or secondary growth. AP1, YAB2 TFs and EXP genes are highly expressed in the IN3, whereas NAC, MYB TFs are likely to be important for secondary growth. These results will expand our understanding of the complex molecular and cellular events of secondary growth and provide a foundation for future studies on wood formation in Eucalyptus.


Assuntos
Eucalyptus , Transcriptoma , Eucalyptus/genética , Eucalyptus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Madeira/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Plant Physiol Biochem ; 208: 108446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422579

RESUMO

Adaptive responses to abiotic stresses such as soil acidity in Eucalyptus-the most widely planted broad-leaf forest genus globally-are poorly understood. This is particularly evident in physiological and anatomical disorders that inhibit plant development and wood quality. We aimed to explore how the supply of Ca and Mg through liming (lime), combined with Cu and Zn fertilization (CZF), influences physiological and anatomical responses during Eucalyptus grandis seedlings growth in tropical acid soil. Therefore, related parameters of leaf area and leaf anatomy, stomatal size, leaf gas exchange, antioxidant system, nutrient partitioning, and biomass allocation responses were monitored. Liming alone in Eucalyptus increased specific leaf area, stomatal density on the abaxial leaf surface, and Ca and Mg content. Also, Eucalyptus exposed only to CZF increased Cu and Zn content. Lime and CZF increased leaf blade and adaxial epidermal thickness, and improved the structural organization of the spongy mesophyll, promoting increased net CO2 assimilation, and stomatal conductance. Fertilization with Ca, Mg, Cu, and Zn positively affects plant nutrition, light utilization, photosynthetic rate, and antioxidant performance, improving growth. Our results indicate that lime and CZF induce adaptive responses in the physiological and anatomical adjustments of Eucalyptus plantation, thereby promoting biomass accumulation.


Assuntos
Compostos de Cálcio , Eucalyptus , Óxidos , Plântula , Plântula/metabolismo , Eucalyptus/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/metabolismo , Fotossíntese/fisiologia , Solo , Zinco/metabolismo
12.
Plant Cell Environ ; 47(4): 1363-1378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221855

RESUMO

Eucalyptus is a widely planted hardwood tree species due to its fast growth, superior wood properties and adaptability. However, the post-transcriptional regulatory mechanisms controlling tissue development and stress responses in Eucalyptus remain poorly understood. In this study, we performed a comprehensive analysis of the gene expression profile and the alternative splicing (AS) landscape of E. grandis using strand-specific RNA-Seq, which encompassed 201 libraries including different organs, developmental stages, and environmental stresses. We identified 10 416 genes (33.49%) that underwent AS, and numerous differentially expressed and/or differential AS genes involved in critical biological processes, such as primary-to-secondary growth transition of stems, adventitious root formation, aging and responses to phosphorus- or boron-deficiency. Co-expression analysis of AS events and gene expression patterns highlighted the potential upstream regulatory role of AS events in multiple processes. Additionally, we highlighted the lignin biosynthetic pathway to showcase the potential regulatory functions of AS events in the KNAT3 and IRL3 genes within this pathway. Our high-quality expression atlas and AS landscape serve as valuable resources for unravelling the genetic control of woody plant development, long-term adaptation, and understanding transcriptional diversity in Eucalyptus. Researchers can conveniently access these resources through the interactive ePlant browser (https://bar.utoronto.ca/eplant_eucalyptus).


Assuntos
Eucalyptus , Genes de Plantas , Genes de Plantas/genética , Eucalyptus/fisiologia , Processamento Alternativo/genética , Madeira , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
13.
PeerJ ; 12: e16250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188140

RESUMO

Brassinosteroids (BRs) play many pivotal roles in plant growth and development, especially in cell elongation and vascular development. Although its biosynthetic and signal transduction pathway have been well characterized in model plants, their biological roles in Eucalyptus grandis, a major hardwood tree providing fiber and energy worldwide, remain unclear. Here, we treated E. grandis plantlets with 24-epibrassinolide (EBL), the most active BR and/or BR biosynthesis inhibitor brassinazole. We recorded the plant growth and analyzed the cell structure of the root and stem with histochemical methods; then, we performed a secondary growth, BR synthesis, and signaling-related gene expression analysis. The results showed that the BRs dramatically increased the shoot length and diameter, and the exogenous BR increased the xylem area of the stem and root. In this process, EgrBRI1, EgrBZR1, and EgrBZR2 expression were induced by the BR treatment, and the expressions of HD-ZIPIII and cellulose synthase genes were also altered. To further verify the effect of BRs in secondary xylem development in Eucalyptus, we used six-month-old plants as the material and directly applied EBL to the xylem and cambium of the vertical stems. The xylem area, fiber cell length, and cell numbers showed considerable increases. Several key BR-signaling genes, secondary xylem development-related transcription factor genes, and cellulose and lignin biosynthetic genes were also considerably altered. Thus, BR had regulatory roles in secondary xylem development and differentiation via the BR-signaling pathway in this woody plant.


Assuntos
Eucalyptus , Brassinosteroides/farmacologia , Diferenciação Celular , Xilema , Madeira
14.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257193

RESUMO

Eucalyptus globulus is widely introduced and cultivated in Yunnan province. Its foliage is mainly used to extract eucalyptus oil, but the by-product eucalyptus residue has not been fully utilized. Based on the above reasons, in this study, we sought to explore the comprehensive utilization potential of eucalyptus resources. The total composition of eucalyptus residue was analyzed by ultra performance liquid chromatography-time-of-flight mass spectrometry (UPLC-Q/TOF MS), and the active components and nutrient components of eucalyptus leaf residue were determined by chemical methods and liquid phase techniques. Meanwhile, the antitumor activity of triterpenoids in eucalyptus leaves was evaluated by tetramethylazazole blue colorimetric assay (MTT). The results of qualitative analysis indicated that 55 compounds were identified from eucalyptus residue, including 28 phloroglucinols, 17 terpenoids, 3 flavonoids, 5 fatty acids, 1 amino acid and 2 polyphenols. Among them, the pentacyclic triterpenoids, in eucalyptus residue, were mainly oleanane type and urthane type. The results of quantitative determination indicated that the content of triterpenoid compounds was 2.84% in eucalyptus residue, which could be enhanced to 82% by silicone separation. The antitumor activity results showed that triterpenoid compounds have moderate inhibitory effects on human breast cancer cell MDA-MB-231, gastric adenocarcinoma cell SGC-7901 and cervical cancer cell Hela. The half maximal inhibitory concentration (IC50) was 50.67, 43.12 and 42.65 µg/mL, respectively. In this study, the triterpenoids from eucalyptus leaf residues were analyzed to reveal that the triterpenoids from eucalyptus leaf have antitumor effects and have potential to be developed as antitumor drugs.


Assuntos
Adenocarcinoma , Eucalyptus , Triterpenos , Humanos , China , Folhas de Planta
15.
Sci Total Environ ; 914: 169820, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199363

RESUMO

The conventional ZVI/H2O2 technology suffers from poor reagent utilization, excess iron sludge generation, and strong low pH dependence. Therefore, eucalyptus leaf extract (ELE) was introduced to improve ZVI/H2O2 technology, and the efficacy and mechanism of ELE promoting ZVI/H2O2 technology were deeply explored. The results showed that the norfloxacin (NOR) removal and kobs of the ZVI/H2O2/ELE process were enhanced by 35.64 % and 3.27 times, respectively, compared to the ZVI/H2O2 process. In the ZVI/H2O2 process, the production of three reactive oxygen species (ROS: 1O2,·O2-,·OH) was effectively promoted by ELE so that the reaction efficacy was significantly enhanced. Moreover, the attack and degradation of pollutants by ROS was the main way to remove pollutants. With the introduction of ELE, the reactive sites on the catalyst appearance were increased to some extent, and the Fe(III)/Fe(II) cycle was improved. The analysis showed that ELE is rich in titratable acids and the ZVI/H2O2 technology is promoted mainly by lowering the pH of the process. In addition, the chelation of ELE and the reduction in pH by the ELE synergistically enhanced the ZVI/H2O2 technology, which significantly improved the reagent utilization (4.70 times for ZVI and 3.03 times for H2O2), broadened the pH range of the technology (6-9) and was able to effectively reduce the iron sludge contamination (30.33 %) of the process. Therefore, the study offers an important value to study eucalyptus leaves in micron-scale ZVI-Fenton technology.


Assuntos
Poluentes Ambientais , Eucalyptus , Poluentes Químicos da Água , Norfloxacino , Poluentes Químicos da Água/química , Peróxido de Hidrogênio/química , Esgotos , Espécies Reativas de Oxigênio , Compostos Férricos , Ferro/química , Extratos Vegetais
16.
Carbohydr Polym ; 329: 121802, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286526

RESUMO

Multivariate models were developed to classify cellulose nanofibril (CNF) fibrillation by a quality index from near infrared (NIR) spectra. Commercial pulps of Eucalyptus spp. were used to produce cellulose nanofibrils by means of a fibrillator mill. After each of the five passes through the mill, samples were collected and analyzed for energy consumption and fiber classification. As a standard, pulps were oxidized with TEMPO reagent followed by a single pass through the mill to compare the resulting quality of CNFs produced by each method. NIR spectra of CNFs were associated with quality indices determined by conventional laboratory analyses that included morphology, turbidity, mechanical properties, X-ray diffraction and quality index measurements. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were applied to the spectral and experimental data. Fibrillator milling to obtain CNFs was efficient and resulted in gel formation following the third pass through the mill. NIR spectroscopy combined with PLS-DA was used successfully to create a model to classify quality of CNFs with 96 % certainty in 3 wt% solutions. These findings suggest that NIR spectroscopy holds promise for estimating CNF quality in suspension, particularly in real-time industrial applications where reliable estimates are crucial.


Assuntos
Eucalyptus , Nanofibras , Celulose/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Eucalyptus/química , Carboidratos , Difração de Raios X , Nanofibras/química
17.
Int J Biol Macromol ; 254(Pt 1): 127764, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287574

RESUMO

In the present study, a new application was proposed for the eucalyptus sawdust waste, which is an environmental passive. Three adsorbent materials composed of chitosan (CS), sawdust (CSW), and magnetic beads (CSWF) were developed and used for the Direct Violet-51 remediation. The adsorption testes were optimized based on the variation of the adsorption parameters: (i) pH (2-12), (ii) contact time (5-60 min), (iii) initial dye concentration (10-60 mg L-1), (iv) adsorbent mass (10-100 mg) in 10 mL. The optimized conditions of the adsorption essays showed that the three synthesized adsorbents completely removed the dye from the aqueous medium, but under different experimental conditions. As the main findings in this study, we can highlight the excellent performance of CSW adsorbent material, which promoted maximum removal efficiency of Direct Violet-51 at neutral pH, which is of great importance for the industrial processes. On the other hand, CS and CSWF adsorbent materials exhibited a maximum adsorption efficiency at pH 2. Furthermore, the adsorbent materials were applied in the dye remediation in environmental water samples from the tap water, Marcela dam, and Poxim River, they did not suffer any major matrix interference, whose removal efficiency values varied between 99.8 and 100, 70.7-100, and 98.8-99.5 % for the CS, CSW, and CSWF, respectively. Finally, besides being materials produced from the waste, they can be reused more times, fitting into the concept of circular economy.


Assuntos
Quitosana , Eucalyptus , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Água , Cinética
18.
Sci Rep ; 14(1): 2556, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297150

RESUMO

Relative gene expression analysis through RT-qPCR is an important molecular technique that helps understanding different molecular mechanisms, such as the plant defense response to insect pests. However, the use of RT-qPCR for gene expression analysis can be affected by factors that directly affect the reliability of the results. Among these factors, the appropriate choice of reference genes is crucial and can strongly impact RT-qPCR relative gene expression analyses, highlighting the importance in correctly choosing the most suitable genes for the success of the analysis. Thus, this study aimed to select and validate reference genes for relative gene expression studies through RT-qPCR in hybrids of Eucalyptus tereticornis × Eucalyptus camaldulensis (drought tolerant and susceptible to Leptocybe invasa) under conditions of inoculation by the Beauveria bassiana fungus and subsequent infestation by L. invasa. The expression level and stability of eleven candidate genes were evaluated. Stability was analyzed using the RefFinder tool, which integrates the geNorm, NormFinder, BestKeeper, and Delta-Ct algorithms. The selected reference genes were validated through the expression analysis of the transcriptional factor EcDREB2 (dehydration-responsive element-binding protein 2). For all treatments evaluated, EcPTB, EcPP2A-1, and EcEUC12 were the best reference genes. The triplets EcPTB/EcEUC12/EcUBP6, EcPP2A-1/EcEUC12/EcPTB, EcIDH/EcSAND/Ecα-TUB, EcPP2A-1/Ecα-TUB/EcPTB, and EcPP2A-1/EcUPL7/EcSAND were the best reference genes for the control plants, mother plants, plants inoculated with B. bassiana, plants infested with L. invasa, and plants inoculated with B. bassiana and subsequently infested with L. invasa, respectively. The best determined reference genes were used to normalize the RT-qPCR expression data for each experimental condition evaluated. The results emphasize the importance of this type of study to ensure the reliability of relative gene expression analyses. Furthermore, the findings of this study can be used as a basis for future research, comprising gene expression analysis of different eucalyptus metabolic pathways.


Assuntos
Beauveria , Eucalyptus , Vespas , Animais , Vespas/genética , Eucalyptus/genética , Eucalyptus/metabolismo , Beauveria/genética , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência
19.
Plant Sci ; 340: 111970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163623

RESUMO

Quantitative wood anatomy is a subfield in dendrochronology that requires effective open-source image analysis tools. In this research, the bioimage analysis software QuPath (v0.4.4) is introduced as a candidate for accurately quantifying the cellular properties of the xylem in an automated manner. Additionally, the potential of QuPath to detect the transition of early- to latewood tracheids over the growing season was evaluated to assess a potential application in dendroecological studies. Various algorithms in QuPath were optimized to quantify different xylem cell types in Eucalyptus grandis and the transition of early- to latewood tracheids in Pinus radiata. These algorithms were coded into cell detection scripts for automatic quantification of stem microsections and compared to a manually curated method to assess the accuracy of the cell detections. The automatic cell detection approach, using QuPath, has been validated to be reproducible with an acceptable error when assessing fibers, vessels, early- and latewood tracheids. However, further optimization for parenchyma is still required. This proposed method developed in QuPath provides a scalable and accurate approach for quantifying anatomical features in stem microsections. With minor amendments to the detection and classification algorithms, this strategy is likely to be viable in other plant species.


Assuntos
Eucalyptus , Pinus , Madeira/anatomia & histologia , Xilema , Estações do Ano
20.
Environ Monit Assess ; 196(2): 162, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231459

RESUMO

Charcoal production stemming from small-scale Eucalyptus camaldulensis plantations has brought about significant socio-economic benefits and improved livelihoods in Ethiopia. Nevertheless, the current practice involves the use of traditional earth mound kilns, leading to inefficiencies, reduced charcoal income, and environmental pollution. This research aims to assess charcoal conversion efficiency, perform a cost-benefit analysis, and measure gas emissions from improved charcoal-making kilns sourced from Eucalyptus camaldulensis small-scale plantations in comparison to traditional earth mound kilns in northwestern Ethiopia. A one-way analysis of variance (ANOVA) was executed, with a significance level set at 0.05. The study results indicate a significant (P < 0.001) disparity in charcoal conversion efficiency across the various tested kilns, with the ranking as follows: Green mad retort kiln (33.7%) > Casamance kiln (32.09%) > MRV steel kiln (28.25%) > traditional earth mound kilns (23.55%). The improved charcoal-making kilns enhanced wood-to-charcoal conversion efficiency by 20-43% compared to traditional earth mound kilns. In terms of financial viability, Casamance improved kilns generated the highest equivalent annual charcoal income (117,126.9 ETB/year), followed by Green Mad Retort (82,893.8 ETB/year) and MRV steel kilns (58,495.9 ETB/year). As anticipated, traditional earth mound kilns yielded the lowest net present value (47,304.3 ETB/year). Traditional earth mound kilns also exhibited significantly longer carbonization times (P < 0.001), taking 3.6 times longer than the Mark V kiln and 2 times longer than the Casamance kiln. Furthermore, the statistical analysis demonstrated that improved charcoal-making technology reduced carbon dioxide (CO2) emissions by 36.1-50.7%, carbon monoxide (CO) emissions by 39.2-54.3%, and methane (CH4) emissions by 29.6-47%. In conclusion, the use of improved charcoal-making kilns has demonstrated significant enhancements in charcoal conversion efficiency, charcoal income, and environmental sustainability. Given these positive outcomes, we strongly recommend a decisive transition from traditional to cleaner, sustainable, and less emissions-intensive charcoal making kilns.


Assuntos
Carvão Vegetal , Eucalyptus , Etiópia , Madeira , Monitoramento Ambiental , Aço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...